Header Image - Laufen zwischen Langenfeld, Hilden und Solingen

Tag Archives

2 Articles

Winter 22/23 mit einer Wärmepumpe

Winter 22/23 mit einer Wärmepumpe

Temperatur Verteilungen

Der Winter 2022/2023 neigt sich dem Ende zu: Zeit für einen Rückblick auf den Einsatz einer Luft-Luft Wärmepumpe.

Monat

Min – Außen

Mittelwert – Außen

Median – Außen

Max – Außen

November

3,57°C

7,40°C

7,54°C

11,18°C

Dezember

-6,47°C

4,41°C

4,42°C

15,80°C

Januar

-2,39°C

5,81°C

6,00°C

13,85°C

Februar

-1,80°C

6,00°C

6,46°C

13,25°C

März

-1,85°C

7,88°C

8,29°C

15,51°C

Die Tabelle oben zu den Außentemperaturen auf Bodenhöhe weißt auf einen milden Winter hin, wie er in Langenfeld im Rheinland, in den letzten Jahren häufig aufgetreten ist.

Diesen milden Winter erkennt man auch in der Verteilung der Messwerte.  Nur 6,8% der Messwerte lagen unter O°C (blaue Linie, vgl. Grafik oben). Da ich Nachts nicht mit der Wärmepumpe geheizt habe, sind es für die Heizmesswerte nur 4,8% der Messwerte, vgl. rote Linie oben. Auf diese Froststunden entfällt 8,33% der Heizenergie, vgl. gelbe Linie oben. Die grüne Linie stellt den COP-Wert des Herstellers da für eine Innentemperatur von 20°C. Bei -7°C wird dieser mit 3,1 angegeben. Für 0°C beträgt der COP gemäß linearer Interpolation schon 4,53. Das arithmetische Temperaturmittel der Messwerte beträgt 6,19°C. Die COP-Mitteltemperatur beträgt hingegen 5,06°C. Das ist diejenige Temperatur, die zum empirischen COP-Mittelwert 5,66 führt d.h. T=COP-1(5,66) . Da der COP-Temperaturzusammenhang nichtlinear ist, weichen arithmetisches Mittel und COP-Mittel deutlich voneinander ab. Die niedrigeren Temperaturen wiegen  schwerer. Der mittlere COP beträgt 5,66 was für eine Luft-Wärmepumpe schon sehr hoch ist. Das dürfte vor allem dem milden Wetter geschuldet sein. Der Hersteller gibt für Mitteleuropa einen SCOP von 4,7 an, für West- und Südeuropa hingegen einen SCOP von 5,8. Nach dem milden Winter 22/23 scheint das Rheinland demnach hinsichtlich SCOP mehr Ähnlichkeit mit Westeuropa (Irland, Südwestengland, Bretagne) als mit Mitteleuropa zu haben.

Aus diesen Verteilungen sind in der Grafik oben die empirischen Häufigkeiten – Klassenbreite 1°C – gewonnen worden und dargestellt. Der blaue Graph gibt die Häufigkeit der Temperatur an. Der Modus liegt bei 9°C – wer hätte das gedacht – und unterstreicht die „milde Winter“ Wahrnehmung.

Der gelbe Graph gibt die auf die Temperaturklasse entfallenden kWh an (Altbau 1914, 44cm Vollziegelwand verputzt, Doppelverglasung 1999). Hier zeichnen sich 3 Gipfel ab, von denen ich vermute, dass sie mit der Nachtabschaltung zusammenhängen. Die orang-gepunktete Linie gibt den Anteil der aus dem Netz bezogenen  kWh wieder. Dazu habe ich für jeden Tag den Beitrag der Photovoltaik (PV) zum Gesamtstromverbrauch berechnet (0%-95%) und vom kWh Bedarf der Wärmepumpe abgezogen. Für die Frosttage fällt das erwartungsgemäß kaum ins Gewicht, aber das sind eben nur 4,8% der Messwerte, wenn auch teure Stunden. In Summe ist aber der Beitrag der PV erheblich. Statt 687 kWh Verbrauch beziehe ich nur 460 kWh aus dem Netz und spare so 33% der Energie. Die vielerorts zuhörende Frage – Was nützt mir die PV im dunklen Winter bei Frost? – ist zwar berechtigt, gilt aber in Langenfeld 2022/23 nur für 4,8% der Messwerte. Für die restlichen 95% trägt die PV maßgeblich zur Einsparung bei. Seit Mitte März kann ich fast den ganzen Heizbedarf mit der PV abdecken.  Wenn man den Energiebezug der Wärmepumpe reduzieren will, konnte man in diesem Winter erheblich mit der PV sparen. Alternative Spartechniken für Wärmepumpen wie Bodenkollektor, Grundwasser oder Erdsonde sollten vor diesem PV-Einsparpotential geprüft werden.

Der mittlere COP betrug in diesem Winter 5,66= 3.889,09 kWh Wärme/ 687,41 kWh Strom. Bezogen auf den Netzbezug von 460,33 kWh resultiert rechnerisch ein COP=8,45.  Man muss dazu allerdings sagen, dass der PV-Strom nicht kostenlos ist: Panels, Batterie, Laderegler, Wechselrichter haben ihren Preis von mehreren 1000€. Ich vermute aber, dass dies um ein vielfaches niedriger ist als die Kosten für Bodenkollektor, Grundwasser oder Erdsonde. Ferner trägt die PV auch jenseits der Heizfrage zum Wohl des Haushalts bei.

Aus der kWh Verteilung und den Häufigkeiten in den Temperaturklassen (vgl. Grafik oben) kann man nun die durchschnittliche W(i) Leistung in einer Klasse i berechnen.  Multipliziert man diese Leistung W(i) mit der Anzahl aller Messwerte N, bekommt man einen Überblick, wie sich der kWh Bedarf entwickelt hätte, wenn stets nur eine Temperaturklasse vorgelegen hätte.

Die beiden Zacken (bei -4°C und 15°C) mit atypischer Monotonie sind auf die geringe Datenlage zurück zuführen. Hätten wir in der gesamten Zeit von 24.11.22- 7.4.23 stets Frost mit 0°C gehabt, so wäre der Heizbedarf vermutlich 1120 kWh gewesen. Bis zu ca. 8°C zeigt der Graph erwartungsgemäß einen fallenden Verlauf. Darüber hinaus scheint er eher konstant zu sein. Dieser Bruchpunkt in der Beziehung (T,kWh) wird im Abschnitt Regression genauer bestimmt.

Vorlauftemperatur und Nachtabschaltung

Zur Abschätzung der Vorlauftemperatur der  Wärmepumpe – das ist ist die für den Carnot-Wirkungsgrad wesentliche Temperatur neben der Außentemperatur – habe ich einen Temperaturlogger direkt an die isolierte Kühlmittelleitung gesteckt und folgendes über 9 Tage gemessen:

Beim Einschalten der Wärmepumpe kommt es „leider“ zu hohen Temperaturen, die sich auch im Strombezug spürbar niederschlagen. Erst im weiteren Tagesverlauf fällt dann die Vorlauftemperatur auf 35°C und gelegentlich auf 27°C ab, was auch den günstigen COP (guter Carnot Wirkungsgrad) erklären mag.

Datum Median – Kältemittel°C Mittelwert – Kältemittel°C Mittelwert – Innen°C Mittelwert – Außen°C
30.03.23 32,04 32,35 18,67 12,20
31.03.23 34,71 33,60 18,67 11,78
01.04.23 28,39 30,06 18,54 10,13
02.04.23 30,16 30,28 18,01 7,46
03.04.23 33,58 34,12 18,84 8,15
04.04.23 32,90 33,18 18,67 8,17
05.04.23 34,85 35,44 18,80 10,02
06.04.23 33,83 34,43 19,47 10,89
07.04.23 34,32 33,47 19,12 9,86
Mittelwert 33,48 32,97 18,77 9,72

Die mittlere Vorlauftemperatur während der Heizphase liegt nach der Tabelle oben bei ca. 33°C. Je geringer diese ausfällt, desto höher der Carnot-Wirkungsgrad und der COP. Diese Vorlauftemperatur würden für meine gußeisernen Heizkörper sicherlich nicht reichen, um 19°C Innentemperatur zu erzeugen. Eine Umrüstung im gesamten Haus dürfte etliche 10.000 € kosten. Aber auch wenn man das auf sich nehmen würde, wären vermutlich über 35°C Vorlauftemperatur erforderlich die zu deutlich höheren Heizkosten führen würden, vgl. Vorlauf und Wh -peak in der Grafik oben.

Eine viel diskutierte Frage ist, ob sich das absenken der Temperatur über Nacht lohnt d.h. kann man damit Energie sparen. Der Graph oben zeigt, dass ich über Nacht das Gerät vollständig ausgeschaltet hatte und damit in dieser Zeit 0 Wh Verbrauch hatte. Auf der anderen Seite fällt beim Wh Graph oben die Leistungsspitze beim Einschalten auf, die vermutlich nicht auftritt, wenn man das Gerät 24 Stunden permanent betreibt. Zur Abschätzung dieser Frage habe ich für jeden Tag den Median Wh nach 13:00 bestimmt und unterstellt, dass dieser der Gleichgewichtspunkt (Energiezufuhr=Energieverlust) für den ganzen Tag ist. Beispiel:

Gemessener Tagesverbrauch in der Heizperiode: 5,153 kWh/Tag

Geschätzter Tagesverbrauch bei „24 Stunden heizen“ in der Heizperiode: 8,085 kWh/Tag

Der Vergleich spricht deutlich für das Abschalten. Eingespart wurden 2,932 kWh/Tag was 56,9% des gemessenen Tagesverbrauchs entspricht. Da der Raum dann morgens recht kühl ist, empfiehlt sich ein 5min. anheizen vor der Nutzung.

Zwischen diesen {Ein,Aus}-Abwägungen zum heizen mit der Wärmepumpe, könnte man noch ein „moderates“ absenken der Temperatur analysieren. Mein Gerät kann allerdings nur bis 17°C Raumtemperatur absenken, die Vorlauftemperatur fällt dann auf ca. 27°C. Meine Vermutung ist hier, dass dann der Vorteil der vollständigen Abschaltung geringer wird, aber dennoch bestehen bleibt, da schließlich der Wärmedurchgang durch die Außenwand von der Temperaturdifferenz Innen-Außen abhängt.

Bauphysikalische Validierung

In der folgenden Grafik ist die durchschnittliche Leistungsaufnahme je Tag der Wärmepumpe in Abhängigkeit der Differenz von Innen- und Außentemperatur dargestellt.

Laut Regression oben in der Grafik steigt die Leistung um ca. 30 W mit einer Zunahme der Temperaturdifferenz um 1°C d.h. dW/dT= 30. Bei dem zuvor ermittelten SCOP=5,66 entspricht dies 170,29 W Wärme/dT. Der Raum hat eine Oberfläche von ca. 115 qm, so dass wir auf einen Wärmedurchgang von 1,48 dW Wärme/dT/m² kommen.

Ich habe mit der Wärmepumpe einen Raum von 26 qm innerhalb eines Hauses, das sonst unbeheizt war, diesen Winter betrieben. Das Haus ist Baujahr 1914, hat eine 44cm Vollziegelwand und die 2fach Isolierverglasung ist von 1999. Dazu habe in der Fachliteratur und www U-Werte herangezogen und für eine mittlere Temperaturlage von 6°C Außen- und 19 °C Innentemperatur berechnet.

Anmerkungen:

  • die Streubreite der U-Werte für eine 44cm Vollziegelwand in der Literatur ist erheblich. Ich habe hier einen Wert von 1,62 angesetzt, der auf einer  Wärmeleitfähigkeit W/(m·K) =0,606 beruht. Daraus resultiert eine Wärmewiderstand von 0,73 und mit dem Übergang an der Oberfläche kommt man zu 1/(0,17+0,73) = 1,12 W/(m²·K).
  • Im Innenraum hatte ich ein vertikales Temperaturgefälle gemessen: 20°C an der Decke, 17°C am Fußboden.
  • Da sämtliche angrenzenden Räume nicht beheizt sind, habe ich für diese 10°C angenommen. Der gemessene Mittelwert im Haus betrug  9,8°C.
  Innen°C Außen°C Innen°C – Außen°C U-Wert W/(m²·K) Fläche m² Wärmeverlust W
Fenster 19 6 13 1,62 5,20 109,51
Außenwand Ost 19 6 13 1,12 13,85 200,93
Innenwand West 19 10 9 1,88 19,05 321,59
Innenwand Süd 19 10 9 1,88 12,23 206,45
Innenwand Nord 19 10 9 1,12 12,23 122,81
Decke 20 10 10 1,50 26,17 392,58
Boden 17 10 7 1,88 26,17 343,70
Summe/Mittelwert     10,00 1,48 114,90 1.697,57

Wenn man nun die Wärmeverlustleistung von 1.697,57 W auf die mittlere Temperaturdifferenz von 10°C  und die 115 m² Oberfläche bezieht kommt man zu einem U-Wert von 1,48 W/(m²·K). Das entspricht dem Wert, den ich ebenfalls aus Regression und mittleren COP -Wert bekomme. Wärmezufluss über COP und Wärmeabfluss über U-Werte der Fachliteratur passen also zusammen.

Szenario-Analyse

Im Folgenden werden einige Temperaturszenarien auf Basis der Messwerte und der gefundenen/gegebenen Zusammenhänge berechnet.

  1. Szenario „cold Winter“. Hier wird unterstellt, dass die Häufigkeit der Frosttage 3 x höher ist als beobachtet und im Gegenzug die „warmen Tage“ 3 x seltener auftreten. Rechnerisch geschieht dies durch Multiplikation der kWh für T<=0°C mit 3 und für die warmen Tage durch Division durch 3. Ich kommen dann zu einem kWh Bedarf von 711 kWh gegenüber 687 kWh empirisch gemessen. Auch damit könnte man noch gut Leben.
  2.  Szenario „Außensanierung“. In der bauphysikalischen Herleitung der Wärmeverluste hatten wir gesehen, dass 310,44W über Fenster und Außenwand verloren gehen, was 18,3% des Gesamtverlustes entspricht. Bezogen auf die 687 kWh bedeudet dies 125,64 kWh. Bei einem Preis von 40 ct/kWh wäre das eine Einsparung von ca. 50€/Jahr bzw. 1000€/20 Jahre. Wenn wir nun mal sehr optimistisch annehmen, dass durch eine sehr gute Isolierung von Fenster und Wand diese Verlust gegen 0 W gehen,  käme man zu einem reduzierten Jahresbedarf von nur noch 561,31 kWh. Die aktuelle Preislage für 3fach Verglasung für 5,2 m² und Außenisolierung für 13,85m² lässt das – selbst über 20 Jahre gerechnet – nicht sinnvoll erscheinen. Denn der „Spaß“ wird deutlich über 1000€ kosten.

Für die weiteren Szenarien benötige ich eine Schätzung der Energieaufnahme in Abhängigkeit der Außentemperatur. Dies kann einerseits über die COP-Herstellerangaben erfolgen, andererseits über gefundene Regressionszusammenhänge.

Abschätzungen auf Basis (T,COP)-Beziehung

  1. „seasonal cooling“ Hier wird unterstellt, dass die Temperatur am Standort für jeden Messwert um 2°C fällt. Rechnerisch bestimme ich kWh(cold)= kWh(real) *COP(T(real))/ COP(T-2). Ich rechne also für jeden Strom-Messwert die erzeugte Wärme gemäß COP-Hersteller für gegebene Außentemperatur T(real) aus und Teile sie dann durch den kleineren COP(T-2). Sollte der Hersteller den COP zu optimistisch angegeben haben (ε-Wärmepumpe), würde sich das hier herauskürzen. In diesem Fall komme ich zu einem Strombezug von 742 kWh und somit zu einem Zuwachs von 54,20 kWh.
  2. „Ground Water“: Analog zu „seasonal cooling“ bestimme ich nun kWh(ground water)= kWh(real) *COP(T(real))/ COP(10°C) wobei ich 10°C für die Grundwassertemperatur angesetzt habe. Damit komme ich auf einen Strom-Bedarf von 593 kWh. Ich spare demnach 94 kWh und es drängt sich die Frage auf, ob diese Ersparnis den Aufwand für die Grundwassernutzung rechtfertigt, zumal das genehmigt werden müsste. Nach diesen Ergebnissen würde ich eher davon absehen.
  3. Würde hingegen das Grundwasser nur eine Temperatur von 8°C liefern, wäre der Energiebedarf bei 632 kWh, die Einsparung beträgt 55 kWh  und somit hätte sich der Vorteil nahezu halbiert.

Abschätzungen auf Basis (T,kWh)-Regression

Zu dieser Abschätzung wurden die Messwerte auf Tagesebene aggregiert.

Für den Zusammenhang W(T),T habe ich eine linear limitationale Beziehung unterstellt, vgl. Grafik oben. Bis 9,75°C fällt die durchschnittliche Tagesleistung der Wärmepumpe um 34,1W/°C. Für höhere Temperaturen wird eine konstante Leistung von 275W geschätzt. Der Bruchpunkt=9,75°C der Regression wurde so bestimmt, dass die Residuensumme minimal ist. Die Leistung wird demnach mit W=max(607,69-34,10T, 275) geschätzt. Diese Leistung muss noch mit der Heizstundenanzahl/Tag – im Mittel 14 Stunden/Tag – multipliziert werden, um die Tagesenergiemenge zu erhalten.

  1. „seasonal cooling“ Hier wird – wie oben ein Temperaturabfall von 2°C für jeden Messwert unterstellt. Es resultiert ein Energiebedarf von 795 kWh was einen Zuwachs von 107 kWh bedeutet. Gegenüber dem COP-basierten Ansatz hat sich hier der Zuwachs verdoppelt!
  2. „Ground Water“: Wie in den COP-Szenarien gehe ich zunächst von konstant 10°C Temperatur der Wärmequelle aus. Es resultieren 485 kWh und somit eine Einsparung von 202 kWh was mehr als das doppelte der geschätzten COP-Einsparung ist.
  3. Würde hingegen das Grundwasser nur eine Temperatur von 8°C liefern, wäre der Energiebedarf bei 591 kWh, die Einsparung bei 97 kWh und somit hätte sich der Vorteil nahezu halbiert.

Zusammenstellung der Ergebnisse

  1. Real hatte ich einen Stromverbrauch von 687kWh im Winter 22/23
  2. Durch Nachtabschaltung konnte ich den Verbrauch um über 50% reduzieren.
  3. Mit Photovoltaik (PV) konnte ich den Netzbezug auf 460 kWh senken.
  4. Würden die Frosttage 3 mal häufiger auftreten, hätte ich 711 kWh Verbrauch.
  5. Käme es zu einer Temperaturabsenkung von 2°C , hätte ich 742 – 795 kWh Verbrauch.
  6. Die Grundwasserlösung mit 10°C Wärmequelle würde zu 485 – 593 kWh Verbrauch führen.
  7. Würde das Grundwasser als externe Wärmequelle hingegen nur 8°C liefern, halbieren sich die Einsparungen, so dass 591- 632 kWh geschätzt werden.
  8. Das Szenario Außensanierung mit maximal gedämmten Fenstern und Außenhülle (0W Verlust) führt zu einem reduzierten Verbrauch von 561 kWh. Die Einsparung von 125,64 kWh wird nie die Kosten der Außensanierung  einspielen.

Die größte Einsprung erziele ich mit Nachtabschaltung und Photovoltaik die auf 460 kWh Netzbezug führen.

Daran kommt auch nicht die 10°C Grundwasserlösung mit geschätzt 485 – 593 kWh heran.  Wäre hier die Wassertemperatur hingegen nur 8°C, schmilzt der Vorteil weiter auf 591-632 kWh. Für die im günstigsten Fall resultierende 200 kWh Einsparung/Saison dürfte sich der bauliche Aufwand kaum rechnen.

Käme es zu einer saisonalen Außentemperaturabsenkung von 2°C über den ganzen Winter, müsste man vermutlich 742 – 795 kWh einsetzen. Im schlechtesten Fall also ca. 100 kWh mehr. Bei derzeitigen Preisen von 40 ct/kWh wären das 40 €/Heizsaison, und ich würde auch in diesem Fall, dass Ruhen der Gasheizung nicht bedauern.

Wenn man die Ergebnisse für weitere Vergleiche anderer Heizsysteme heranzieht, muss man sicherlich auch die relativ niedrige Innentemperatur von 18°C-19°C im Auge behalten. Das ist für mich als Sportler kein Problem. Wer sich aber tagsüber kaum bewegt und eine sitzende Tätigkeit ausübt könnte damit ein Problem haben.

Es spricht dennoch viel für den Einsatz einer effizienten Wärmepumpe: Aber gibt es einen Fall/Szenario, bei dem diese wirklich substanziell schlechter abschneidet als eine herkömmliche Gasheizung? Im Winter 22/23 geisterte das „black/brown -out“ des Stromnetzes durch die Presse. Wenn nun das Wachstum des Strombedarfs höher ausfällt (weil alle auf Wärmepumpe/E-Auto umstellen) als die Produktion durch Kraftwerke, Dunkelflaute herrscht oder die Netze den Strom nicht mehr durchleiten können, könnte man in solchen Situationen das alleinige Abstellen der Wärmeerzeugung auf die Wärmepumpe bedauern.

Bewegungsarmut, Energiekrise & Energiesparen

Bewegungsarmut, Energiekrise & Energiesparen

Zwischen Bewegung und Energie gibt es nicht nur physikalische Zusammenhänge sondern auch mikro- und makroökonomische Beziehungen.

 

Jeder von uns nähert sich dem Energiesparen auf individuelle Weise. Wenn man das von dem „physischen Ich“ aus betrachtet gewinnen wir die Energie über Oxidation von Kohlenwasserstoffen in der Atmung. Dabei wird uns warm. Wer wenig atmet, spart Energie, lagert sie in das ventrale Energielager ein und  kühlt aus,  so einfach ist das. Jedem Läufer ist dieser Zusammenhang aus eigener Erfahrung bekannt.

Der Energieverbrauch gliedert sich in Grundumsatz und Leistungsumsatz. Ersteres wird maßgeblich vom Energieumsatz zur Aufrechterhaltung der Körpertemperatur (Thermogenese) bestimmt. Letzteres ist i.d.R. eine bewusste Handlung – d.h. setzt unseren Willen voraus – und fällt insbesondere beim Ausdauersport groß aus. Dabei wird für die physische Leistung, aber nur ca. 10%-30% benötigt, der Rest geht in Wärme über. Auch diese Relation kann jeder Läufer im Sommerlauf bei über 20°C Außentemperatur bestätigen: wir schwitzen zur Kühlung. Jedwede Isolierung, ob durch Kleidung oder körpereigenes Fett ist hier von Nachteil.

Ein geringer körpereigener Energieumsatz ist also mit einer geringen Wärmeproduktion assoziiert. Wer sich kaum bewegt, führt sich deshalb die Energie gerne anders zu. Im Winter kommt die Energie aus der Heizung. Es gibt demnach eine substitutive Beziehung zwischen eigener Wärmeproduktion und Wärmebedarf aus anderen Quellen. Dieser Zusammenhang zwischen Bewegung und Wärme schlägt sich in der „Kurzfristenergieversorgungssicherungsmaßnahmenverordnung“ (kurz EnSikuMaV) des Wirtschaftsministeriums (Minister Habeck) nieder. Dort heißt es:

§ 6 Höchstwerte für die Lufttemperatur in Arbeitsräumen in öffentlichen Nichtwohngebäuden

(1) Im Arbeitsraum in einem öffentlichen Nichtwohngebäude darf die Lufttemperatur höchstens auf die folgenden Höchstwerte geheizt werden:

  1. für körperlich leichte und überwiegend sitzende Tätigkeit 19 Grad Celsius,
  2. für körperlich leichte Tätigkeit überwiegend im Stehen oder Gehen 18 Grad Celsius,
  3. für mittelschwere und überwiegend sitzende Tätigkeit 18 Grad Celsius,
  4. für mittelschwere Tätigkeit überwiegend im Stehen oder Gehen 16 Grad Celsius oder
  5. für körperlich schwere Tätigkeit 12 Grad Celsius

Je geringer die Bewegung, desto mehr Heizenergie wird zugestanden. Die Gesetzgebung selber ist vermutlich als leichte sitzende Tätigkeit einzuordnen. In Sporthallen kommt es hingegen zu „schwerer Tätigkeit“. Sie sind deshalb nur mäßig geheizt und das Warmwasser ist stillgelegt. Wir machen uns vor dem Bodenturnen mit Laufen warm.

Am 13. Dezember 2022 fand der Bewegungsgipfel mit Prof. Dr. Karl Lauterbach (Gesundheitsminister) und Nancy Faeser (Innenministerin) in Berlin statt. Hier wurde vieles besprochen und gefordert, natürlich auch der präventive Schutz unserer Gesundheit durch Sport betont, aber nicht der offensichtliche Zusammenhang zwischen Energiekrise und Bewegung (Thermogenese, EnSikuMaV) thematisiert, zumal ersteres mit dem Angriffskrieg Russlands gegen die Ukraine am 24.2.2022 die Medien beherrscht.

Mit sportlichen Aktivitäten hat man definitiv Einfluß auf den Heizrenergiebedarf, aber auf 0,0 kWh lässt er sich natürlich nicht reduzieren. Angeregt durch den youtube’er Andreas Schmitz aus dem PV-Bereich habe ich mich für den Einbau einer split-Klimaanlage mit SCOP = 4,8 entschieden mit der ich derzeit heize.

Schematisch ist das oben in der Grafik dargestellt. Das Außengerät entzieht der Außenluft Wärme, „verdichtet“ sie mit einem Kompressor, gibt die Wärme über einen Ventilator im Innengerät an den Raum ab, der sie letztlich überwiegend über die wärmeleitenden Wände wieder nach Außen abgibt, womit sich der Kreislauf schließt. Die Aufrechterhaltung dieses Ungleichgewichts kostet Energie. Ein Maß für die Effizienz der Klimaanlage ist der Seasonal Coefficient Of Performance, kurz SCOP, der bei meiner Anlage laut Hersteller bei 4,8 liegt, d.h. 1 kWh Strom soll zu 4,8 kWh Wärme führen. Neben der Effizienz der Klimaanlage ist für die Effizienz des Heizprozess natürlich die Wärmeleitfähigkeit und Wärmekapazität des Wandmaterials (lambda, blauer Pfeil abwärts in der Wand) sowie der U-Wert der Mauer maßgeblich, den man mit Dämmung/Isolierung verändern kann.

Die Grafik zeigt Strombedarf (W) als auch Innen-, Flur- und Außentemperatur. Der beheizte Raum ist der einzige im Gebäude d.h. hat keine Berührung zu einer anderen Wärmquelle!

Die Anlage habe ich auf eine Solltemperatur von 19°C (Habeck, EnSikuMaV) eingestellt. Erwartungsgemäß kann man hier schon eine negative Korrelation zwischen Außentemperatur und Energiebedarf erkennen. Ferner fällt die morgendliche Spitzenlast beim anheizen des Raums auf.

Da ich bei den Frosttagen befürchtete, dass mir die alte Gasheizung „kaputt friert“ habe ich den Brenner auf Programm Frostsicherung angestellt, aber die Heizkörperventile auf „*“/geschlossen gestellt. Alleine dieser Frostsicherung hat mich dann im extrem Fall 80kWh/Tag gekostet.

Man sieht am Verlauf der Flurtemperatur, dass dennoch Wärme abgegeben wurde. Das kann teilweise auch auf Luftaustausch mit dem beheizten Raum zurückgehen, weil ich die Innentür offen gelassen hatte.

Die Grafik oben stellt den selben Sachverhalt auf Tagesebene da. Vom 25.11.22 bis zum Jahresende habe ich einen täglichen Heizbedarf von ca. 6kWh/Tag (gepunktete Linie). Die Varianz ist aber mit ca. 50% erheblich und die kalten Tage < 0°C kosten richtig Strom. Ferner deutet sich ein timelag in der Beziehung Außentemperatur zur Heizleistung an, dass ich noch prüfen muss, welches auch plausibel wäre, da die Mauer erheblich Energie speichert und möglicherweise verzögert abgibt.

Stellt man den Energiebedarf in Wh/Tag in Abhängigkeit der mittleren Außentagestemperatur da, kommt man zu folgender Beziehung.

Wie zu vermuten ergibt sich hier ein fallender Verlauf d.h. je höher die Außentemperatur, desto niedriger der Heizbedarf. Mit dem gefundenen Polynom ist man in der Lage, auch für andere Temperaturverläufe den Energiebedarf abzuschätzen. Für 0°C werden ca 8,2 kWh/Tag geschätzt, was plausibel erscheint. Man sieht aber auch, dass die sehr kalten Tage (-5°C) fast doppelt soviel Energie erfordern wie der Durchschnitt.

Für jeden Heiztag habe ich eine linear-limitationale Beziehung geschätzt, hier beispielhaft für die Tage 25.11. und 13.12.

In der Grafik oben erkennt man mehrere Zusammenhänge. Der Energieinput fällt nach Inbetriebnahme und nähert sich mit der Zeit einem Gleichgewichtspunkt, ab dem sich weder Temperatur noch Heizleistung ändern. Ich interpretiere das so, dass Energieverlust und Energiebedarf im Gleichgewicht sind. Dieses Gleichgewicht fällt in den Tagen deutlich unterschiedlich aus.

Am 13.12.22 wurden in Summe 9,36 kWh Heizenergie benötigt. Ab 15:00 stabilisiert sich die Leistung bei 500,5 W. Das ist der Median über die Werte ab 13:00. Hätte man mit diesen 500 W den ganzen Tag geheizt, so ergäben sich 12kWh/Tag. Das Abschalten übernacht hat demnach 2,6 kWh = 28% Heizenergie gespart. Über alle Heiztage im Herbst 2022 komme ich auf eine Ersparnis von 2,76 kWh/Tag. Für diesen Zeitraum ergibt sich eine mittlere Energieersparnis von 47% gegenüber Vollzeitbetrieb. Mit einer heizkörper- und wassergebundenen Heizung lässt sich das vermutlich nicht in dem Umfang realisieren, weil das System viel „träger“ ist. Ich würde vermuten, dass eine Innenisolierung – das Mauerwerk wird weniger erwärmt – diesen Effekt noch verstärken wird.

Die Beziehungen zwischen diesen täglichen Energiegleichgewichten und der Temperaturdifferenz Innen-Außen sind im Folgenden dargestellt.

Die homogene Regression zeigt eine Steigung von 29,22 W/d T, wobei d T der Temperaturunterschied zwischen Innen- und Außentemperatur in °C ist.

Der beheizte Raum hat eine Oberfläche von 115 qm (davon 2,75 qm Glas) , so dass man auf einen mittleren U-Wert von 0,2541 W/dT/qm kommt. Für einen Altbau Baujahr 1914 mit 44cm Vollziegelaußenwand ohne „Kernsanierung“ aber mit Doppelverglasung von 1999 ist das schon OK.

Nach DIN 4713 entfällt auf einen Tag im Nov. /Dez. ca. 5,16 Promille der gesamten Jahresheizlast. Der beheizte Raum hat eine Grundfläche von ca. 26 qm so dass man auf eine Heizlast von 44,90 kWh/qm/Jahr kommt. Auch das ist für einen Altbau schon ganz gut.

In Summe kann ich so meinen Energiebezug an Erdgas und Strom 2022 mehr als halbieren. Das von Minister Habeck und der Bundesnetzagentur ausgegebene Sparziel von 20% Erdgasreduktion habe ich weit übertroffen. Das ist neben den hier dargestellten Ansätzen auch mit einem Komfortverlust verbunden gewesen. Dem gegenüber stehen die nicht unerheblichen Kosten für die Anlagen, die sich hoffentlich bei den hohen Energiepreisen schnell amortisieren. Mein Warenkorb – Stichwort Inflation 10,4% Okt. 2022 – besteht jetzt mehr aus „Investitionsgüter“ als aus „Energie“ die durch den Schornstein rauscht.