Header Image - Laufen zwischen Langenfeld, Hilden und Solingen

Category Archives

13 Articles

Laufleistung in Watt

Laufleistung in Watt

Die Leistung – gemessen in Watt – ist im Radsport eine zentrale Größe und kann selbst im Freizeitbereich mit Messgeräten zu erschwinglichen Preisen zuverlässig ±4% bestimmt werden. Diese messen die sogenannte äußere Leistung die auf Pedal, Kurbel oder Nabe wirkt und somit direkt geschwindigkeitswirksam ist. Der Athlet hat damit in „real time“ ein Leistungsfeedback.
Im Laufsport ist die Leistung aber bisher dem Freizeitläufer kaum zugänglich. Die Zweckmäßigkeit eines Laktattest zur Einstufung der Leistungsfähigkeit von Freizeitsportlern wird selbst vom DFB  vor dem Kostenhintergrund bezweifelt. Daneben sind dies keine Echtzeit-Informationen und können so im konkreten Lauf kaum helfen.

Ein ähnliche Funktion wie die Echtzeit-Leistungsmessung im Radsport hat die Herzfrequenz im Laufsport, die mit Brustgurt oder mittlerweile auch mit optischen Sensoren am Handgelenk gemessen wird. Diese dürfte statistisch gesehen sehr hoch mit der Leistung korreliert sein.

Meine Erfahrungen aus dem Radsport gehen dahin, dass ein Watt-Messgerät ganz erheblich die Leistung steigern und objektivieren kann. Während die Herzfrequenz gefühlt eher das „sich quälen„ misst, ist die Leistung ein zuverlässiges Maß, an dem man sich orientieren kann. Unter widrigen Umständen – Steigung, Gegenwind, schlechter Untergrund, viele Kreuzungen – ist man ohne Wattmeter häufig unzufrieden mit der eigenen Leistung, obwohl kein Anlass dazu besteht. Unter günstigen Umständen ist es anders herum. Man gibt sich zufrieden, obwohl noch viel mehr möglich ist.

Daneben ist es aus Sicht des Autors schon fast pathologisch, die Laufleistung mit dem „sich quälen“ abzuschätzen. Das Ziel sollte doch eher darin bestehen, eine Laufleistung mit möglichst wenig Schmerz zu erbringen. Vermutlich führt dieses „sich quälen“ Paradigma gepaart mit Ehrgeiz bei unerfahrenen Läufern zu den Sportverletzungen an Fuß, Knie und Bein.

Das Problem ist aber, dass man die Leistung im Laufsport in der Regel nicht vorliegen hat. Deshalb soll im Folgenden die Leistung aus den Datenfeldern einer Laufuhr abgeleitet werden. Der hier verfolgte Ansatz orientiert sich an den Gleichungen von  Dr. Lälles erklärt’s . Dieser Ansatz baut im wesentlichen auf der Veränderung der potentiellen Energie d.h. der Lageenergie bei einem Laufschritt auf.

    \[ \begin{array}{lcl} % P(t)_{\mbox{\small Hubleistung}}         & = & m_{\mbox{\small Läufer}} g H(t) \,\, K(t) \\ P(t)_{\mbox{\small Beinbeschleunigung}}  & = & c  K(t) \\ P(t)_{\mbox{\small Luftwiderstand}}      & = & \frac{1}{2}  r_{\mbox{\small Luft}}  A_{\mbox{\small Läufer}}  c_{w \,\mbox{\small Läufer}} v(t)_{\mbox{\small Läufer}}^3\\ P(t)_{\mbox{\small netto}}               & = & P(t)_{\mbox{\small Hubleistung}} + P(t)_{\mbox{\small Beinbeschleunigung}} + P(t)_{\mbox{\small Luftwiderstand}}\\ P(t)_{\mbox{\small brutto}}              & = & \frac{1}{\eta} P(t)_{\mbox{\small netto}} + P(t)_{\mbox{\small Grundumsatz}}\\ W_{\mbox{\small Lauf}}                   & = & \sum_i t_i P(t_i)_{\mbox{\small brutto}}  \\ \hline \multicolumn{3}{l}{ \mbox{\small mit: }  t= \mbox{\small Zeit}, H(t)=\mbox{\small vertikal Hub}, K(t)=\mbox{\small Kadenz}, v(t) =\mbox{\small Geschwindigkeit}, W_{\ldots} = \mbox{\small Arbeit}, P_{\ldots} = \mbox{\small Leistung}}\\ \multicolumn{3}{l}{ \mbox{\small und Parametern: }  m=70,\quad g =9.81,\quad c=10,\quad r A c_w/2= 0.2889378414\quad \eta=0.21 } \end{array}  % \]

  • Zeit, Vertikal Hub, Kadenz und Geschwindigkeit werden von der Laufuhr gemessen. Hier muss aber beachtet werden, dass diese Daten mit Fehlern und Ausreißern behaftet sind.
  • Die anderen Konstanten sind der Literatur – insbesondere Dr. Lälles erklärt’s entnommen – sowie geringfügig modifiziert worden um zu vergleichbaren Ergebnissen bei der Gesamtkalorienmenge W(Lauf) zu kommen.  Insbesondere ist die Gleichung für Beinbeschleunigung angepasst worden. Widerstandskräfte wie isometrische Arbeit und Reibung in den Gelenken sind hier nicht explizit berücksichtigt und schlagen sich so im Wirkungsgrad η nieder.
  • Gegen- oder Rückenwind sind nicht abgebildet.
  • Ebenfalls sind Auf- und Anstiege nicht modelliert. Hier würde sich zudem die Frage stellen, ob die Anstiege zu einem gewissen Teil schon im Vertikalhub enthalten sind.
  • Die Nettoleistung ist die äußere Leistung die für die Bewegung nötig ist. Die Bruttoleistung ist die Leistung die der Körper erbringen muss. Dazwischen liegen Grundumsatz und Wirkungsgrad η.
  • Bei allen Variablen ist auf die Verwendung von SI – Einheiten zu achten (m/s, 1/s) bzw. entsprechend umzurechnen.
  • Da hier nur die Grundrechenarten in überschaulicher Anzahl verwendet werden, spricht nichts dagegen dies in Echtzeit in einer Laufuhr auszuführen und anzuzeigen. Bei der Garmin Fenix 3 ist dies derzeit aber nicht vorgesehen.

 

Die Nettoleistung steht damit in Abhängigkeit von  P(t)_{\mbox{\small netto}}  & = & c_1 H(t)  K(t) + c_2 K(t) + c_3 v(t)^3

wobei fürs Freizeitlaufen aus dem ersten Term mehr als 80% der Leistung kommen dürfte. Demnach würde ein um 1% gesteigerter Hub und eine um 1% gesenkte Kadenz ungefähr zur gleichen Leistung führen. Das mag physikalisch erklärbar sein, für den Läufer dürfte dies aber nicht ratsam sein. Man sollte im Gegenteil bei konstanter Leistung eher die Kadenz erhöhen und den vertikal Hub senken. Dies wird deutlich, wenn man zusätzlich die Schrittweite S betrachtet. Bei konstanter Schrittweite würde die erste Variante mit gesenkter Kadenz nämlich auch zu einer 1% niedrigeren Geschwindigkeit führen. Der Bezug des Vertikalhubs zur Geschwindigkeit ist eindrucksvoll in folgender Grafik dargestellt.

  2015 VertikalHubFotos

Quelle: Weidt, M. und  T. Wilhelm (2015) Gehen und Laufen im Physikunterricht, S. 8

Man sieht in der Abbildung deutlich, dass hier beim Joggen der Kopf – und mit ihm der Schwerpunkt – deutlich stärker vertikal ausgelenkt wird als beim Sprint.

Nimmt man die Gleichung für die Hubleistung und nutzt den Zusammenhang zwischen Geschwindigkeit, Kadenz und Schrittweite nach v(t) = S(t) K(t) so ergibt sich, da S > 0, \quad  P_{\mbox{\small Hub}}  =  m g \frac{H}{S} v. Bei konstanter Hubleistung, Hub und Schrittweite führt eine um 1% gesteigerte Masse zu einer Geschwindigkeitssenkung von ebenfalls 1%. Leichte Läufer sind hier also im Vorteil, und so etwas ähnliches besingen auch „Silbermond“ mit

Du nimmst all den Ballast
und schmeisst ihn weg,
Denn es reist sich besser,
mit leichtem Gepäck.

Der Läufer sollte also möglichst lange Beine für den Schritt und möglichst wenig Masse haben. Da aber die Körperlänge sowohl mit Beinlänge als auch Masse positiv korreliert seien dürfte – zumindest bei Leichtathleten, behäbige Wohlstandsbürger ausgeklammert – liegt das Optimum irgendwo in der Mitte und Arne Gabius (derzeit 1.86m, 66kg) dürfte schon Aufgrund der Größe eher am rechten Rand der Verteilung bei Topläufern liegen.
Für eine möglichst schnelle und energetisch günstige Bewegung kann man das folgende Problem betrachten:

    \begin{eqnarray*} \max\limits_{S,H,K}  (v-P_{\mbox{\small Hubleistung}}) &=& S K -c_1 H K \\ & = & S(K -  c_1 K {H/S}) = SK(1-c_1 \tan(\phi)) \\ & = & v (1-c_1 \tan(\phi)) \end{eqnarray*}

Die optimale Lösung hätte demnach maximale Geschwindigkeit (an der oberen Grenze des Möglichen) bei minimalen Winkel ϕ an der unteren Grenze.

Aber was hat man sich hier unter der Winkel ϕ vorzustellen? Formal ergibt er sich aus dem Verhältnis Hub zu Schrittweite. Eine damit positiv korrelierte Größe dürfte der Absprungwinkel sein. Das ist der Winkel, mit dem der Fuß den Boden verlässt. Und diesen kann der Läufer durch den „Laufstil“ beeinflussen. Mit

    \[ P_{\mbox{\small Hubleistung}}= m\, g\, v\, tan(\phi) \]

haben wir also eine instruktive Schreibweise für die Hubleistung gefunden. Dieser Fragestellung soll in einer weiteren Analyse nachgegangen werden. Insbesondere hängt hier die Leistung linear von der Geschwindigkeit v ab. Diese Funktionsform findet man auch in der Literatur2008 PowerWalkRun

Quelle: Waller, D. (2008), S.17

Leistung und Geschwindigkeit

Diese Gleichungen zur Leistung werden nun auf eine Trainingslaufaufzeichnung von Sportplatzrunden angewendet.

				

Die GPS Aufzeichnung deckt sich ganz gut mit dem Sportplatz und Ausreißer in Längen- und Breitengrad sind nicht erkennbar. Im Wald, Bergen oder Stadt mit schlechterem GPS Empfang können hier deutlichere Abweichungen auftreten. Ausreißer, die in Bewegungsrichtung liegen, können mit dieser topografischen Kontrolle natürlich nicht gefunden werden, obwohl sie auch zu einer Fehleinschätzung der Geschwindigkeit beitragen können.

Abbildung 1: Geschwindigkeit und Leistung zu Lauf auf Sportplatz2016-01-06_ScaledSpeed

Die Ordinate ist hier nicht äquidistant skaliert, damit das Bild nicht zu sehr von den offensichtlichen Ausreißern am oberen Ende dominiert wird. Für die Luftwiderstandsgleichung (v^3) sind diese Werte besonders unangenehm. Deutlich erkennbar sind einige schnellere Runden am Anfang sowie gemütliches Laufen in der zweiten Hälfte. Die dicken blauen Linien sind das 5%, 50%, 95% Quantil der gemessenen Geschwindigkeiten. Mit roten Punkten sind die abgeleiteten Nettoleistungen dargestellt und es lässt sich schon hier ein enger Zusammenhang vermuten.

Exkurs kinetische Energie

Die Arbeit für die Beinbeschleunigung W(Bein) kann nach Rodewald mit

    \[ W_{\mbox{\small Bein}} =  \frac{1}{2}  m_{\mbox{\small Bein}}  v_{\mbox{\small Bein}}^2    \]

für jeden Schritt geschätzt werden. Das ist die aus der Schulphysik bekannte Gleichung für kinetische Energie, bezogen auf die Beine. Hat der Läufer eine konstante Geschwindigkeit erreicht – „steady state“ d.h. keine weitere Beschleunigung – so ist nach Rodewald

  • die Beingeschwindigkeit gleich der Laufgeschwindigkeit und
  • die Energie geht vollständig in den Widerständen (Reibung etc.) auf.

Dies stimmt natürlich nur im Groben. Denn bei jedem Lauf sind abwechselnd die Beine vor und hinter dem Schwerpunkt und müssen deshalb regelmäßig schneller und langsamer sein als der Läufer.

Nach Rodewald kann man die Beinmasse m(B) mit  m(B) =1/8 m(Körper) abschätzen. Die Leistung ist dann die Arbeit bezogen auf die Schrittzeit t und damit P_{\mbox{Bein}} =  W_{\mbox{\small Bein}}   K

Rechenbeispiele:
 \begin{tabular}{lrrrr} Masse & 70 & 70 & 70 & 70 \\ Beinmasse & 8,75 & 8,75 & 8,75 & 8,75 \\ \hline Pace [min/km] & 3:20 & 4:10 & 5:00 & 6:00\\ Speed [km/h] & 18 & 14,4 & 12 & 10 \\ v [m/s] & 5,00 & 4 & 3,33 & 2,78\\ \hline WB [J] & 109,38 & 70 & 48,61 & 33,76\\ Kadenz [1/min] & 150 & 150 & 150 & 150\\ Zeit pro Schritt [s] & 0,4 & 0,4 & 0,4 & 0,4\\ \hline P(B) [W] & 273,44 & 175,00 & 121,53 & 84,39 \end{tabular}

Diese Berechnungen zeigen für hohe Geschwindigkeiten das richtige Niveau. Für niedrige Geschwindigkeiten wie z.B. 6:00 er pace, scheint die Nähe zum Grundumsatz untertrieben.

Abbildung 1a: Gegenüberstellung verschiedener Leistungsberechnungen

2016-01-06_powerPot_Kin

Die Gegenüberstellung der zwei Leistungsberechnungsarten zeigt deutliche Unterschiede

  • in der ersten schnelleren Hälfte stimmen die Leistungswerte zumindest im Mittel noch überein
  • die langsamere 2 Laufhälfte wird durch das kinetische Modell wahrscheinlich unterschätzt
  • das kinetische Modell zeigt die größere Streuung.

Berücksichtigt man, dass die Laufgeschwindigkeit mit gps Fehlern behaftet ist, dürften gerade diese durch den Term v_B^2 verstärkt werden. Deshalb wird dieser Ansatz zunächst nicht weiter verfolgt.

Beziehung der Leistung zu andere Messwerten der Laufuhr

Die von der Laufuhr aufgezeichneten Felder sind in der folgenden Grafik gegenüber gestellt.

Abbildung 2: Scatterplot zum Lauf auf Sportplatz

2016-01-06_LDA_Scatter

Insgesamt erkennt man auch hier die beiden Laufhälften (kleiner oder größer 12km/h) in allen Beziehungen (oberes Dreieck) gut und es finden sich viele signifikante Korrelationen (unteres Dreieck). Die abgeleitete Leistung ist mit fast allen Größen bis auf den vertikal Hub pro Schritt (vertical oscillation) hoch korreliert. Das war so nicht zu erwarten, da der Löwenanteil der Leistung auf den Aufstieg pro Schritt zurück geht.

Der Scatterplot lässt vermuten, dass man den langsameren und schnelleren Teil des Laufs aufgrund der anderen Variablen gut trennen kann. Dazu wird eine lineares Diskriminanzmodell angesetzt.

Abbildung 2a: Trennung langsamer und schneller Läufe mit lineare Diskriminanzfunktion

2016-01-06_LDA_Histo

Die Trennebene ist mit dem Vektor

 \begin{tabular}{lr} Variable    & LD1 \\ \hline heart\_rate  & 0.05344165 \\ Cadence     & 0.01522985 \\ stance\_time & -0.08757772 \\ vertical\_oscillation & -0.04386457 \\ \end{tabular}

gegeben. Demnach  kann man an hoher Herzfrequenz & Kadenz sowie niedriger Bodenkontaktzeit und geringem Vertikalhub langsame von schnellen Läufen relativ gut trennen. Wir haben damit einen empirischen Beleg für weit verbreitete Thesen in der Laufliteratur, die jeder Besitzer einer „neueren“ Laufuhr tagtäglich prüfen kann.  Da auch hier die Berechnung für gegebenen LD1 Vektor linear und relativ einfach ist, könnte die Ausgabe auch in Echtzeit erfolgen.

Schätzung der maximalen Leistung

Der Zusammenhang zwischen Leistung und Herzfrequenz soll mit Quantil-Regressionsmodellen weiter untersucht werden. Die Herzfrequenz wird hier als Steuerungsgröße für die Leistung aufgefasst. In der Fachliteratur findet man gelegentlich den Hinweis, dass die Herzfrequenz der Leistung hinterher eilt. Um dies zu prüfen, werden die „gelagten“ Korrelationen power(t), heart_rate(t-L) berechnet.

2016-01-06_power_heartrate_lag

Insgesamt zeigt sich hier schon ein hoher Zusammenhang. Die höchste Korrelation wird beim Lag=0 angenommen: dies spricht für keinen zeitlichen Versatz. Es zeigt sich aber auch, dass ein Lag von 1 kaum zu Einbußen führt. Im Weiteren wird ohne Lag gearbeitet.

Abbildung 3: Leistung und Herzfrequenz

            (a) Quantil Regression mit quadratischer Form                (b) parametrische Quantil Regression

 2016-01-06_power_hr2016-01-06_power_hr_param

  • Beide Regressionen zeigen eine mit der Herzfrequenz steigende Leistung.
  • Bei der quadratischen Form ist diese deutlich degressiv, wobei dies sicherlich auch an der vorgegebenen Funktionsform liegt. Ferner lässt sich ein Leistungsmaximum bei ca. 230 Watt erahnen. Das stimmt auch relativ gut mit der oberen Leistungsgrenze für 1 Std Radfahrt beim Autor überein.
  • Bei der parametrischen Regression kann man zwar auch eine Leistungsdegression erahnen, das Maximum dürfte demnach aber Höher liegen. Das wiederum deckt sich ganz gut mit der Pace im 10km Wettkampf des Autors, die höher liegt und in dieser Runde nicht erreicht wurde.

Zerlegung der Geschwindigkeit in Einflussgrößen

Abschließend soll der Einfluss dieser Variablen auf das Tempo identifiziert werden. Dazu wird ein  IRLS Ansatz für ein Regressionsmodell gemacht.

Abbildung 4: Regressionsmodell zur Identifizierung der geschwindigkeitsbestimmenden Variablen2016-01-06_SpeedFromPower

Sämtliche Koeffizienten haben das fachlich erwartete Vorzeichen, auch wenn „stance_time_percent“ nicht signifikant ist. Dies wird auch an der im Scatterplot deutlich erkennbaren negativen Korrelation liegen. Der größte Einfluss geht von der Leistung aus, gefolgt von der Herzfrequenz. „vertical_oscillation“ also der Vertikalhub pro Schritt hat ein negatives Vorzeichen, was auch den Theorien entspricht. Die Kadenz konnte nicht mit einbezogen werden, da sie hoch mit power korreliert ist (vgl. power Ableitung) und damit nicht sicher zwischen beiden Einflüssen unterschieden werden kann.

Ausblick

Das vorgestellte Leistungsmodell basiert im wesentlich auf Vertikalhub, Kadenz und Geschwindigkeit des Läufers, die in Echtzeit messbar sind. Für einen weiteren Ausbau des Modells

  • sollten die anderen physikalischen Modelle zum Gehen und Laufen wie. z.B. kinetischer Ansatz, umgekehrtes Pendel, Feder-Masse-Modell geprüft werden
  • sollte man insbesondere stärker physiologisch orientierte Modelle untersuchen, denn dieser Aspekt ist hier mit dem Wirkungsgrad η und Herzfrequenz nur sehr rudimentär abgebildet.
  • sollte der Absprungwinkel ϕ weiter betrachtet werden, zumal er sich ebenfalls aus den Daten der Laufuhr abschätzen lässt
  • sollten Auf- und Abstiege einbezogen werden
  • das Modell an einer breiteren Datenbasis kalibrieren. Dazu könnte man im Lauftreff Messungen bei den Mitgliedern durchführen und im Rahmen einer Querschnittanalyse das Modell anpassen und ergänzen.

Literatur

Müller, R. (2006) Die Physik des Gehens als Unterrichtsfach, TU Braunschweig
https://www.tu-braunschweig.de/Medien-DB/ifdn-physik/gehen-und-laufen.pdf

Rodewald, B. u. H.J. Schlichting (1988) Springen, Gehen, Laufen, Praxis der Naturwissenschaften-Physik 37/5 (1988) S. 12-14
https://www.uni-muenster.de/imperia/md/content/fachbereich_physik/didaktik_physik/publikationen/springen_gehen_laufen.pdf

Rottler, A.  (2014)  Dr. Lälles erklärt’s
http://www.laufen-in-siegen.de/index.php/dr-laelles-erklaert-s/laelles-uebersicht

Waller, D. (2008)  Physics meets Sports: Biomechanische Modelle Gehen und Laufen
http://tennisfragen.de/wordpress/wp-content/uploads/2011/11/Gehen-und-Laufen-Waller-UNI-Regensburg.pdf

Weidt, M. und  T. Wilhelm (2015) Gehen und Laufen im Physikunterricht
http://www.thomas-wilhelm.net/veroeffentlichung/Gehen.pdf

Einstieg in die Laufdatenanalyse

Einstieg in die Laufdatenanalyse

Ein Lauf mit der Garmin Fenix 3 Laufuhr produziert schon für kleine Laufeinheiten eine relativ große Datenmenge die im Garmin  *.fit Format auf der Uhr abgespeichert wird. In der Regel hat der User seine Laufuhr mit dem Handy gekoppelt oder überträgt per WLAN diese Daten an sein zuvor eingerichtetes Garmin-Connect Konto. Sind die Daten übertragen kann, man sich dazu Auswertungen in seinem Konto anschauen. Der Pace-Graph sieht in Garmin Connect dann z.B.  so aus:2016-01-02 Run Garmin Connect

2016-01-02 Run Garmin Connect croped

Hier sticht im ersten Moment der sehr „volatile“ Verlauf der Zeitreihe ins Auge. Da der Autor selber diese Strecke gelaufen ist, kann er die „spikes“ mit z.B. 3:07 min/km sicher ausschließen d.h. dies sind ausschließlich GPS-Messfehler. Diese spikes haben unangenehme Eigenschaften:

  • Das Minimum und Maximum der Zeitreihe besteht i.d.R nur aus Messfehlern.
  • Liegt ein spike in einem kurzen Laufsegment, wird der Mittelwert stark verzerrt.
  • Die spikes verstellen den Blick aufs Ganze da man kaum Trends, die Wirkung von Anstiegen etc. ausmachen kann.
  • Die Skalierung der Ordinate fällt durch die spikes ungünstig aus.

Daneben gibt es noch eine weitere Sicht in Garmin Connect auf den Lauf.

  • die Skalierung der Achsen ist nicht immer befriedigend
  • Die Wahl des Zeichenmodus – gefüllte Fläche, Linie Punkte –  ist vorgegeben
  • Die Daten können nur über Zeit oder Distanz auf der Abszisse gezeichnet werden. Insbesondere wird  jede andere multivariate Betrachtung nicht unterstützt.

Zusammenfassend kann man für die Grafiken festhalten:

  1. Lokal kommt es zu großen Verzerrungen im Tempo
  2. Die Sicht auf die Laufdaten ist vielfach unbefriedigend
  3. Ein kausaler Zusammenhang zwischen Tempo und den anderen Messgrößen kann grafisch kaum abgeleitet werden. Das sind aber die Größen, an denen der Läufer arbeiten kann, um seine Pace zu verbessern.

Das ganze Prozedere von Lauf bis abschließender Analyse wirft die Frage auf, wer Eigentümer und Besitzer der Daten ist. Für viele Läufer dürfte der Besitz d.h. die Verfügung über das Eigentum sehr eingeschränkt sein. Man hat eigentlich nur eine voreingestellte Sicht auf die Daten, kann aber nicht mit ihnen arbeiten. Der Autor hat bis jetzt noch kein frei zugängliches Tool wie z.B. gps-babel gefunden, dass sämtliche Felder des Fenix3 fit-file ausließt. Deshalb wurde hier der „harte“ Weg beschritten, der aber Programmierkenntnisse voraussetzt. Dazu beschafft man sich ein Garmin SDK, spielt dieses in eine Entwicklungsumgebung ein und erstellt sich per Programm die nötigen Dateien aus dem fit Format. Diese kann man dann z.B. mit GNU R auswerten.

Die Zeitreihe Tempo zu diesem Lauf weißt folgende Autokorrelationen auf:

2016-01-02 Run SpeedAutoCorrelation

Es zeigt sich also ein signifikanter positiver Zusammenhang für die ersten ca. 10 Lags, der auch zu erwarten war. Danach ist kein signifikanter Einfluss mehr erkennbar. Als Einstieg in die multivariate Datenanalyse bietet sich häufig ein Scatterplot an.

2016-01-02 Scatter

Auf der Hauptdiagonalen befinden sich die Histogramme zu den Variablen, im oberen Dreieck die Scatterplots und im unteren Dreieck die Korrelationen. Uns interessiert hier zunächst der Zusammenhang zwischen Speed und den anderen Variablen. Im Scatterplot sind das die erste Zeile und erste Spalte. Demnach ist der Zusammenhang zwischen Speed und (stride length, heart rate, stance time %) am stärksten und mit dem fachlich erwarteten Vorzeichen ausgeprägt.

  • stride length: Die Schrittlänge wird bei Garmin über Schrittfrequenz  und zurückgelegten Weg ermittelt. Sie ist deshalb mit den selben Fehlern des GPS Signals behaftet aus denen die Geschwindigkeit ermittelt wird. Die hohe Korrelation könnte auf diesem Fehler-Zusammenhang beruhen.
  • heart rate wird über den Brustgurt gemessen. Ist dieser am Anfang des Laufs nicht feucht, kann es zu größeren Fehlen kommen. Der Autor hält deshalb den Brustgurt vorher kurz unter warmes Wasser.
  • stance time % wird über die Erschütterung gemessen. Je länger man auf dem Boden bleibt, desto schlechter die Pace.

Für diese Daten wird nun folgendes linear homogene Modell (d.h. ohne Konstante) in R angesetzt:


lm(formula = speed ~ 0 + time + time2 + heart_rate + heart_rate_lag1 +    heart_rate2 + vertical_climb_plus + vertical_climb_minus +     Cadence + stance_time_percent + vertical_oscillation, data = rundata,   weights = w)

Um den spikes entgegen zu wirken wird ein IRLS (vgl. https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares) Ansatz mit reziproken Gewichten zur Nachbildung der L1-Norm gewählt.

Independent Variable Estimate Std. Error t value Pr(>|t|) signif
time -1,38E-003 1,85E-004 -7,438 4,12E-013 ***
time2 3,43E-007 5,40E-008 6,346 4,74E-010 ***
heart_rate 1,80E-001 1,93E-002 9,332 < 2e-16 ***
heart_rate_lag1 -1,03E-002 2,57E-003 -3,985 7,69E-005 ***
heart_rate2 -3,14E-004 7,81E-005 -4,018 6,70E-005 ***
vertical_climb_plus -1,20E-003 1,36E-004 -8,777 < 2e-16 ***
vertical_climb_minus -2,38E-004 1,13E-004 -2,111 0,0352 *
cadence 4,66E-002 6,62E-003 7,048 5,66E-012 ***
stance_time_percent -3,13E-001 2,87E-002 -10,924 < 2e-16 ***
vertical_oscillation -2,20E-003 7,89E-003 -0,278 0,7808

und eine hochsignifikante Regression:
Residual standard error: 0.855 on 532 degrees of freedom
Multiple R-squared: 0.9984, Adjusted R-squared: 0.9984
F-statistic: 3.345e+04 on 10 and 532 DF, p-value: < 2.2e-16

Die Zeit geht mit 2 Termen (time, time2=time*time) ein. Hier wird eine nach oben offene Parabel im Wertebereich [-1.4; -0.2] km/h geschätzt mit Minimum auf dem letzten Drittel des Laufs. Die Herzfrequenz geht mit 3 Termen ein (heart_rate, heart_rate2, heart_rate_lag1). Bezüglich des quadratischen Teils (heart_rate, heart_rate2) zeigt sich ein erwartungsgemäß degressiver Verlauf d.h. abnehmender Grenznutzen des sich „quälen“. Die Variable heart_rate_lag1 hat ein negatives Vorzeichen d.h. je niedriger die Herzfrequenz in der Vorperiode desto höher die aktuelle Geschwindigkeit. Die Variablen zum Anstieg gemessen in Höhenmeter/Zeit haben das erwartete Vorzeichen. Hier fällt auf, dass der Tempoverlust beim Anstieg größer ausfällt als der Tempogewinn bei „downhill“ bzw. dieser nur mäßig signifikant ist . Eine Erklärung hierfür könnte sein, dass man sich beim Bergablauf ausruht. Die Schrittfrequenz hat erwartungsgemäß einen positiven Einfluss aufs Tempo. Die Verweildauer auf dem Boden hat erwartungsgemäß einen negativen Einfluss aufs Tempo.  Die Hebung des Oberkörpers (vertical_oscillation) hat hier einen negativen, aber nicht signifikanten Einfluss. Das Vorzeichen entspricht hier der fachlichen Theorie, aber wahrscheinlich ist dieser Zusammenhang eher über eine Querschnittsstudie  – Vergleich mehrer Läufer –  und über längere Distanzen nachweisbar. Die Gegenüberstellung von Rohdaten und Modellprognose führt zu folgender Grafik:2016-01-02 Run ModelPrediction

Die Modellprognose verläuft hier schon deutlich ruhiger und realistischer. Die spikes sind erfolgreich eliminiert worden.

Jahresstatistik 2015

Das Jahr neigt sich dem Ende zu und man fragt sich unweigerlich, was man geschafft hat. Deshalb hier ein kleiner Überblick in Zahlen über die in strava erfassten Leistungen unseres LT. Abgerufen wurden diesen Daten am Donnerstag 31.12.2015 um 21:20.

Die Erfassungsmethoden

  • ob Handy, GPS-Uhr oder
  • manuelle Eingabe

führen jedoch zu mehr oder weniger kleinen Fehlern die sich auch nicht unbedingt ausgleichen und somit zu einer Verzerrung beitragen.

  • manuelle Eingabe: es gab teilweise bei strava Probleme (bugs) mit der Eingabe. Ferner sind Höhenmeter nicht erfasst. Des weiteren dauert es eine gewisse Zeit, bis reale Trends im täglichen Sport erkannt werden und sich in der Eingabe niederschlagen.
  • Handy und nicht barometrische Höhenmessung: strava nimmt hier die Koordinaten (Längen- und Breitengrad) und ermittelt über ein weltweites digitales Höhenmodell die Höhe zu gegebenen Koordinaten. Dies führt bei Tunneldurchfahrten aber auch bei schlechtem GPS-Signal in Schluchten und Wäldern zu einer deutlichen Überschätzung der Höhenmeter.
  • GPS-Uhr und Signal: Von der Tendenz her können für zeitlich kurze Abläufe (wenige Messwerte) bei niedriger Geschwindigkeit (hoher Rauschanteil) nur sehr unsicher Geschwindigkeiten ermittelt werden. Dies gilt insbesondere für kurze Laufsegmente. Auf längere Sicht – mehr Messwerte – gleichen sich diese Fehler zum Teil aus, es kommt aber dennoch zur einer systematischen Überschätzung, da der aufgezeichnete GPS-Track um den wahren Pfad mäandriert, also zu lang ist. Unsere Einschätzungen gehen dahin, dass selbst bei hochwertigem GPS-Sensor (Garmin Fenix 3) dies ca. 1-5 s/km für den Pace-Mittelwert für eine Einheit ≥ 10km ausmachen könnte. Bei weniger gutem GPS-Sensor ist der Fehler noch größer sein. Ein weiteres Fehlermoment macht sich beim Start der Aktivität bemerkbar. Hat man dem GPS-Sensor nicht genug Zeit für die initiale Positionsbestimmung gelassen und ist diese deshalb sehr ungenau, führen die folgenden Signale zu einer schrittweisen Korrektur des initialen Fehlers in der aufgezeichneten Aktivität. Dies führt mit hoher Wahrscheinlichkeit zu einer Überschätzung der Weglänge und des Tempos.
  • Schwimmuhr: Hier ist von der Tendenz  beim „Pool-Schwimmen“ ebenfalls mit einer sporadischen Überschätzung zu rechnen, d.h. es wird eine Bahn zu viel gezählt. Vermutlich hängt dies mit den Bewegungen bei der Wende zusammen. Beim Freiwasserschwimmen empfiehlt sich, den GPS-Sensor unter der Badehaube zu tragen. Wie beim Laufen kommt es hier zur einer Überschätzung des zurück gelegten Wegs.

Was ist denn nun die Konsequenz aus diesen zahlreichen Fehlermöglichkeiten und Einwendungen? Jede hier diskutierte Messmethode hat ihre Fehler, und sehr wahrscheinlich fallen diese bei GPS gestützter Auswertung noch am geringsten aus. Für eine exakte Messung sind derzeit abgemessene Strecke und Chip / Zielfoto unschlagbar. Das machen wir auch gerne bei Wettkämpfen, aber ungern bei unseren wöchentlichen Läufen. Wir haben so die Freiheit, den Weg auch mal zu variieren und  Pausen zu machen  und kennen dennoch unser Leistungsvermögen in guter Näherung.

Hier unsere Läufe 2015: Die Namen habe ich mal zur Sicherheit weggelassen und einfach Buchstaben für die Sportler/innen vergeben.

Laufstatistik für 2015 a b c d e f g Summe pro Kopf
Distanz [km] 3.219,70 1.837,00 1.375,10 1.076,70 813,90 400,00 426,20 9.148,60 1.306,94
Zeit [hh:mm:ss] 279:41:00 163:50:00 130:53:00 104:37:00 73:01:00 36:00:00 38:06:00 826:08:00 118:01:09
Höhenmeter [Hm] 11.866 7.654 805 212 1.919 100 880 23.436 3.348
Läufe [Anzahl] 254 151 113 93 88 40 52 791 113
Pace [min/km] 00:05:13 00:05:21 00:05:43 00:05:50 00:05:23 00:05:24 00:05:22 00:05:25
Vertikal climb [min/HM] 00:01:25 00:01:17 00:09:45 00:29:37 00:02:17 00:21:36 00:02:36 00:02:07
Lauflänge [km] 12,68 12,17 12,17 11,58 9,25 10,00 8,20 11,57

Unser mittleres Tempo ist also 5:25 min/km. Eine genauere Betrachtung zeigt, dass wir hier eine ausgesprochene Saisonfigur haben. Der vermutlich einfachste Ansatz zur Temposteigerung besteht darin, der „Winterdepression“  mit Elan entgegenzutreten. Daneben könnte man die Lauflänge reduzieren und die Frequenz erhöhen, was aber organisatorisch/terminlich schwierig ist. Und natürlich wirken Höhenmeter nicht positiv auf das mittlere Tempo. Die technischen Entwicklungen der Laufuhren gibt weitere Ansatzpunkte zur Temposteigerung, in dem man gezielt an den Messgrößen Cadence, stance_time, und vertical_oscillation arbeitet um eine effizienteren Lauf [kJ/km]  zu realisieren.

Unsere Radfahrten 2015:

Radstatistik für 2015 h i j k Summe pro Kopf
Distanz [km] 12.722,40 10.252,90 1.735,30 1.189,10 25.899,70 6.474,93
Zeit [hh:mm:ss] 525:50:00 435:55:00 99:48:00 72:49:00 1134:22:00 283:35:30
Höhenmeter [m] 108.467 59.616 21.082   189.165 63.055
Radfahrten 242 212 159 42 655 163,75
 
Längste Radfahrt 317,20 169,50 12,70 120,00 317,20
Größter Anstieg 2.602 324 112   2.602
Tour-Länge [km] 52,57 48,36 10,91 28,31 39,54
v [km/h] 24,19 23,52 17,39 16,33 22,83
Steigung % 0,85% 0,58% 1,21% 0,97%
vertical Climb [m/h] 206,28 136,76 211,24 166,76

Beim Radfahren haben wir offensichtlich ein sehr weit gespreiztes Feld, sowohl hinsichtlich km Leistung als auch Tempo. Dies hängt einerseits mit den persönlichen Interessen/Schwerpunkten als auch mit der technischen Ausstattung zusammen. Letzteres könnte im lowspeed Bereich massiv das Tempo erhöhen in der oberen Hälfte dürfte der Fortschritt eher marginal und sehr teuer werden.

Zum Schluss noch das Schwimmen:

 Schwimmstatistik für 2015 l m Summe pro Kopf
Distanz [m] 109.113 23.430 132.543,00 66.271,50
Zeit [hh:mm:ss] 43:19:00 25:17:00 68:36:00 34:18:00
Schwimmeinheiten 69 33 102 51
   
Pace [min/km] 00:23:49 01:04:45 12:25:18
Einheitenlänge [km] 1,58 0,71 1,30

Das Schwimmen ist eher ein „Stiefkind“ des LT’s, obwohl es ein guter Ausgleich zu den anderen Sportarten ist, die zum überwiegenden Teil die Beine beanspruchen. Hier könnte uns insbesondere eine personelle Verstärkung helfen indem es z.B. durch einen weiteren Personenkreis im LT getragen wird.

Im Folgenden ein Versuch diese 3 Sportarten ins „Laufen“ umzurechnen. Ausgangspunkt ist hier die Relation der sportartspezifischen Marathondistanz zum klassischen Laufmarathon:

Sportart Distanz LT-Pappelalle [km] Lauf-Multiplikator Laufdistanz-Äquivalent [km] Anzahl Personen pro Kopf [km]
Schwimmen (Marathon = 10 km) 132,54 4,22 559,27 2 279,63
Radfahren (Marathon = 205 km) 25.899,70 0,21 5.330,92 4 1.332,73
Laufen (Marathon = 42,195 km) 9.148,60 1,00 9.148,60 7 1.306,94
Summe 15.038,78 2.919,30

Hätte jeder von uns die durchschnittliche km-Leistung in den Sportarten erbracht, ergäbe sich eine Laufleistung von ca.

2.900 km/Jahr oder 56 km/Woche.

Das ist schon eine überraschend große Zahl! Geht man von den 2 wöchentlichen Terminen a 12 km aus, steuern die anderen Sportarten demnach erheblich zum Gesamtumfang bei.